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Abstract This paper deals with the 2D system of
incompressible poroelasticity equations in which an arti-
ficial stabilization term has been added to the discreti-
zation on collocated grids. Two issues are discussed: It is
proved and shown that the additional term indeed brings
stability and does not spoil the second order accurate
convergence. Secondly, various smoothers are examined
in order to find an optimal multigrid method for the dis-
crete system of equations. Numerical experiments con-
firm the stability and the second order accuracy, as well
as fast multigrid convergence for a realistic poroelastic-
ity experiment.
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1 Introduction

The classical quasi-static Biot model [1–3] for soil
consolidation, mathematically describes the time depen-
dent interaction between the deformation of an elas-
tic porous material and the fluid flow inside of it. This
model can be formulated as a system of partial differen-
tial equations for the unknowns displacement and pres-
sure. By u = (u, v) we denote the displacement vector
and by p the pore pressure of the fluid. Here, we con-
sider the case of a homogeneous, isotropic and incom-
pressible medium Ω , so the governing equations are
given by

−µ∆̃u − (λ + µ)grad div u + grad p = g(x, t), (1)
∂

∂t
(div u) − κ

η
∆p = f (x, t), x ∈ Ω , 0 < t ≤ T, (2)

where λ and µ are the Lamé coefficients, κ is the per-
meability of the porous medium, η is the viscosity of
the fluid and ∆̃ represents the vector Laplace operator.
The quantity div u (x, t) is the dilatation, i.e. the volume
increase rate of the system, which can be considered as a
measure of the change in porosity of the soil. The source
terms g(x, t) and f (x, t) are supposed to be in (L2(Ω))2

and L2(Ω), respectively. They are used to represent a
density of applied body forces and a forced fluid extrac-
tion or injection process for each case.

For simplicity in the analysis of the convergence of
the schemes, we assume here that ∂ Ω is rigid (zero dis-
placements) and permeable (free drainage), so that we
have homogeneous Dirichlet boundary conditions,

u(x, t) = 0, p(x, t) = 0, x ∈ ∂ Ω . (3)
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Other more realistic boundary conditions (such as
natural boundary conditions) can be studied in the same
framework. For completeness, we will consider in last
section an example including a traction on the
boundary.

Before fluid starts to flow and due to the incom-
pressibility of the solid and fluid phases, the initial state
satisfies

div u(x, 0) = 0, x ∈ Ω . (4)

When a load is applied on an elastic saturated porous
medium, the pressure suddenly increases and a sharp
boundary layer appears in the early stages of the time-
dependent process. In the case of an unstable discret-
ization, unphysical oscillations appear in the first time
steps of the numerical solution. After this phase, the
solution shows a much smoother behaviour and these
oscillations tend to disappear. Some care is needed in
the construction of stable discretizations for the whole
process. Whereas a significant development has taken
place in the finite element treatment of this problem
(see, for example [8,10],), we aim at the development of
stable and accurate finite difference schemes for incom-
pressible poroelasticity on Cartesian grids. This is done
having in mind rectangular domains for consolidation
problems, as well as the availability of highly efficient
iterative multigrid solution techniques for the resulting
discrete problems.

A staggered grid discretization approach has been
presented in [4,5]. Pressure points in the staggered grid
were located at the vertices of the cells while the dis-
placement points were defined at the cell faces. This
approach guaranteed stable schemes, independently of
discretization parameters, that are second order con-
vergent in discrete energy norms. An efficient multi-
grid solver for the system of poroelasticity equations
discretized on the staggered grid has been developed
in [6,13]. However, the choice for a staggered grid is a
rigorous one. Staggered grid discretizations may not be
easily generalized to curved domains, or to unstructured
grids.

The discretization by standard central finite differ-
ences of a transformed problem on a collocated grid [7]
does not produce unphysical oscillations. More precisely,
with the introduction of new variables q = −∆p and
v = ∂u

∂t , an equivalent transformed system reads

−µ∆̃v + grad
(

∂p
∂t

+(λ+µ)
κ

η
q
)

=(λ + µ) grad f + ∂g
∂t

,

q + ∆p = 0,

∂q
∂t

− (λ + 2µ)
κ

η
∆q = −(λ + 2µ)∆f − div

∂g
∂t

, (5)

with v = 0, p = 0, div v + κ
η

q = f as the boundary
conditions. Moreover, for a 1D discrete poroelasticity
model the corresponding numerical scheme appears to
be equivalent to a discretization by central differences
on a collocated grid of a poroelasticity equation with a
perturbation term ε

∂∆p
∂t , with ε = h2

4(λ+2µ)
.

The new problem reads

−µ∆̃u − (λ + µ)grad div u + grad p = g(x, t), (6)
∂

∂t
(div u − ε∆p) − κ

η
∆p = f (x, t), (7)

which needs be supplied by the initial condition

div u(x, 0) − ε ∆p(x, 0) = 0.

In addition to favorable stability, excellent convergence
for the decoupled treatment of system (5) was obtained
by employing scalar multigrid methods for each of the
equations in (5) separately [7]. However, the system
transformation may not be easily performed in the case
of heterogeneous media, in which coefficients are not
constant. Furthermore, the straightforward decoupled
treatment of (5) gave only O(τ ) accuracy in time, with τ

the time step, as the unknowns in the boundary condi-
tions are lagging one time step behind.

In this paper we generalize the benefits of the ap-
proach in [7] to two-dimensional problems, however, by
explicitly adding an artificial pressure term to Eq. (2).
So, we work on a collocated grid, with the original equa-
tions in which a stabilization term is added. In Sect. 3
we present the 2D stability and convergence properties
of the discretization.

When discretizing the incompressible poroelasticity
equations with standard second order discretizations
and an artificial pressure term, the development of mul-
tigrid smoothing methods is not straightforward.
Smoothing factors of standard collective point-wise
relaxations are not satisfactory. A possibility to over-
come this problem is to extend the idea of box relax-
ation, which has proved to be a suitable smoother in
the case of staggered grid discretizations, to the non-
staggered case (for incompressible Navier–Stokes equa-
tions, for example, in [9]). The development of such
smoothers is pursued in Sect. 4. As in the staggered case,
box relaxation should be replaced by a corresponding
box-line version, if significant anisotropies occur.

In Sect. 5 different smoothers are compared in the
multigrid solution of reference experiments.
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2 A stabilized difference scheme

In the construction of difference schemes for the
solution of problem (6) and (7) we begin by the space
approximation. For simplicity in notation, we consider
the problem on the unit square and introduce a uniform
grid with the same mesh size in each direction. Let ω be
the set of internal nodes of the grid

ω = {(ih, jh) , i, j = 1, . . . , N − 1}

where h = 1/N, with N ∈ IN and ∂ω the set of bound-
ary nodes. The finite difference solution of (1) – (4) will
be denoted by uh(x, t), ph(x, t) , x ∈ ω ∪ ∂ω, 0 < t ≤ T.
Using the standard index-free notation of the theory of
difference schemes [11], for the right, left and central
difference derivatives we write

wx = w(x + h) − w(x)

h
, wx̄ = w(x) − w(x − h)

h
,

w◦
x

= w(x + h) − w(x − h)

2h
.

The second difference derivative is given by

wx̄x = 1
h

(wx − wx̄) = w(x + h) − 2w(x) + w(x − h)

h2 .

For grid functions vanishing on ∂ω, we consider the Hil-
bert space H = L2(ω), with scalar product and norm
given by

(y, w) =
∑
x∈ω

ywh2, ‖y‖ = (y, y)1/2.

Let us introduce H̃ = H⊕H, for vector-valued functions
that are zero on ∂ω, with

(y, w) = (y1, w1) + (y2, w2), ‖y‖ = (y, y)1/2.

Given a selfadjoint and positive definite operator C,
HC denotes the space H, supplied by the scalar prod-
uct (y, w)C = (Cy, w) and norm ‖y‖C = (Cy, y)1/2. We
approximate the differential operator of the elasticity
part −µ∆̃ − (λ + µ)grad div by the difference operator

A =
(

A11 A12
A21 A22

)
,

A11y = −µ∆hy − (λ + µ) yx̄1x1 , (8)

A12y = A21y = −λ + µ

2
(yx̄1x2 + yx1x̄2),

A22y = −µ∆hy − (λ + µ) yx̄2x2 ,

where the usual five-point stencil approximation of the
Laplace operator is used: ∆hy = yx̄1x1 +yx̄2x2 . For y, w ∈
H̃ we have (Ay, w) = (y, Aw). In addition to that we have

−µ∆̃h ≤ A ≤ −(λ + 2µ)∆̃h, with∆̃h =
(

∆h 0
0 ∆h

)
.

Due to A = A∗ ≥ µδhẼ, with δh > 0 being the mini-
mum eigenvalue of operator ∆h and Ẽ the identity oper-
ator in H̃, the difference operator A is selfadjoint and
positive definite. To approximate the diffusion operator
∆, we shall use By = −∆hy, so that B = B∗ ≥ δh E
with E the identity operator in H. To approximate the
coupling terms, grad p and div u, we use second order
approximations

Gy = (y◦
x1

, y◦
x2

), for y ∈ H,

Dw = (w1)◦
x1

+ (w2)◦
x2

, for w ∈ H̃.

Operators G : H → H̃ and D : H̃ → H verify the
property (Gph, uh) = −(ph, Duh).

After the spatial approximation of (6–7) we arrive at
a Cauchy problem for the system of differential-differ-
ence equations

Auh + Gph = gh(x, t), (9)

d
dt

(
Duh + h2

4(λ + 2µ)
Bph

)
+ κ

η
Bph = fh(x, t), (10)

with the initial condition Duh(0)+ h2

4(λ+2µ)
Bph(0)=0.

We now construct a simple difference scheme in time
for the approximation of the solution {uh , ph} of the
Cauchy problem. We use a uniform grid for time dis-
cretization with step-size τ > 0. Let ym(x) = y(x, tm),
where tm = mτ , m = 0, 1, . . . , M, Mτ = T. The implicit
Euler scheme then reads

Aum+1
h + Gpm+1

h = gm+1
h , (11)

Dum+1
h − Dum

h

τ
+ h2

4(λ + 2µ)

Bpm+1
h − Bpm

h

τ

+κ

η
Bpm+1

h = f m+1
h , (12)

where the initial condition has already been incorpo-
rated. Other discretizations can easily be obtained if, for
example, two-level weighted schemes are used for time
stepping. The second order accurate Crank–Nicolson
scheme is applied in the numerical experiments in
Sect. 5.
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3 Convergence of the stabilized scheme

We give an energy estimate for the stabilized discrete
problem (11)–(12). For simplicity, suppose that p0

h sat-
isfies the boundary conditions. Otherwise, a different
estimate must be used for the first time step (see [5]).

Proposition 1 The solutions of scheme (11)–(12) for
m ≥ 0 satisfy the a priori estimates

‖um+1
h ‖2

A ≤ 2‖u0
h‖2

A + h2

2(λ + 2µ)
‖p0

h‖2
B + 2‖gm+1

h ‖2
A−1

+ C1

⎛
⎝τ

m+1∑
j=1

‖f j
h‖2

B−1 +τ

m∑
j=0

‖gj+1
h −gj

h

τ
‖2

A−1

⎞
⎠ ,

(13)

‖pm+1
h ‖2

B ≤ 2‖p0
h‖2

B + C2

⎛
⎝τ

m∑
j=0

‖ f j+1
h − f j

h

τ
‖2

B−1

+τ

m∑
j=0

‖gj+1
h −gj

h

τ
‖2

A−1 + ‖f m+1
h ‖2

B−1

⎞
⎠ , (14)

where C1 and C2 are constants independent of the dis-
cretization parameters.

Proof To obtain an a priori estimate for the displace-
ments, solution um+1

h is splitted up into two parts, um+1
h =

u m+1
h + u

m+1
h . The first part u m+1

h , is the solution of the
problem

Au m+1
h = gm+1

h , (15)

and the second part u
m+1
h is the solution of

Au
m+1
h + Gp m+1

h = 0, (16)

Du
m+1
h − Du

m
h

τ
+ h2

4(λ + 2µ)

Bpm+1
h − Bpm

h

τ

+κ

η
Bpm+1

h = f m+1
h − Dum+1

h − Dum
h

τ
. (17)

After multiplying scalarly (16) and (17) by (u
m+1
h −

u
m
h )/τ and pm+1

h , respectively, we get for 0 ≤ m ≤ M−1,

(
Au

m+1
h ,

u
m+1
h −u

m
h

τ

)
+

(
Gp m+1

h ,
u

m+1
h −u

m
h

τ

)
= 0,

(18)

and

(
D

u
m+1
h − u

m
h

τ
, p m+1

h

)
+ κ

η

(
Bp m+1

h , p m+1
h

)

+ h2

4(λ + 2µ)

(
B

pm+1
h − pm

h

τ
, pm+1

h

)

=
(

f m+1
h , p m+1

h

)
−

(
Dum+1

h − Dum
h

τ
, p m+1

h

)
. (19)

The addition of (18) and (19) yields

(
Au

m+1
h , u

m+1
h − u

m
h

)
+ τ

κ

η
B

(
p m+1

h , p m+1
h

)

+ h2

4(λ + 2µ)

(
B(pm+1

h − pm
h ), pm+1

h

)

= τ
(

f m+1
h , p m+1

h

)
−

(
Dum+1

h − Dum
h , p m+1

h

)
. (20)

Applying the generalized Cauchy–Schwarz inequality at
the right-hand side, we get

1
2

(
‖u

m+1
h ‖2

A − ‖u
m
h ‖2

A

)
+

h2
(
‖pm+1

h ‖2
B − ‖pm

h ‖2
B

)
8(λ + 2µ)

≤ τη

2κ
‖f m+1

h ‖2
B−1 + τη

2κ
‖D

um+1
h − um

h

τ
‖2

B−1 , (21)

and therefore (13) is obtained, i.e., the solution uh is sta-
ble with respect to the initial data and right-hand side.

To obtain an a priori estimate for the pressure, a new
splitting of the solution will be used. Let be p m+1

h =
p m+1

h + p
m+1
h , where the first part p m+1

h is the solution
of the problem

κ

η
B p m+1

h = f m+1
h , m = 0, . . . , M − 1, (22)

and the second p
m+1
h is solution of

Aum+1
h + Gp

m+1
h = gm+1

h − Gp m+1
h , (23)

Dum+1
h − Dum

h

τ
+ κ

η
Bp

m+1
h +

h2B
(

p
m+1
h − p

m
h

)
4τ(λ + 2µ)

= − h2

4(λ + 2µ)
B

p m+1
h − p m

h

τ
. (24)
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We get from (23) and (24)

τ

∥∥∥∥∥
um+1

h − um
h

τ

∥∥∥∥∥
2

A

+
(

G
(

p
m+1
h − p

m
h

)
,

um+1
h − um

h

τ

)

= −
(

G
(

p m+1
h − p m

h

)
,

um+1
h − um

h

τ

)

+
(

gm+1
h − gm

h ,
um+1

h − um
h

τ

)

and(
D

um+1
h −um

h

τ
, p

m+1
h −p

m
h

)
+ κ

η

(
Bp

m+1
h , p

m+1
h −p

m
h

)

+ h2

4(λ + 2µ)

(
B

p
m+1
h − p

m
h

τ
, p

m+1
h − p

m
h

)

= − h2

4(λ + 2µ)

(
B

p m+1
h − p m

h

τ
, p

m+1
h − p

m
h

)
.

After adding these equations and simple transforma-
tions, we obtain the inequality

κ

2η

(
‖p

m+1
h ‖2

B−‖p
m
h ‖2

B

)
≤ τ

2

∥∥∥∥∥G

(
p m+1

h −p m
h

τ

)∥∥∥∥∥
2

A−1

+ τh2

16(λ+2µ)

∥∥∥∥∥
(

p m+1
h −p m

h

τ

)∥∥∥∥∥
2

+τ

2

∥∥∥∥∥
gm+1

h − gm
h

τ

∥∥∥∥∥
2

A−1

obtaining estimate (14). 
�
Convergence results are straightforward using esti-

mates (13) and (14) and by considering the approxima-
tion errors of the scheme.

4 Multigrid solution method

Traditional understanding of multigrid is based on the
insight that a smoothing method reduces high frequency
components of an error between numerical approxima-
tion and the exact numerical solution, and a coarse grid
correction based on standard grid coarsening handles
the low frequency error components. It is the challenge
to determine suitable multigrid components, like multi-
grid smoothers, for the discrete system under consider-
ation. We search for an efficient multigrid solver for the
perturbed poroelasticity equations discretized on collo-
cated grids. With respect to the coarse grid correction,
we choose geometric grid coarsening on the Cartesian
grids, i.e. the sequence of coarse grids is obtained by

doubling the mesh size in each spatial direction, and
the multigrid transfer operators, from fine-to-coarse and
from coarse-to-fine, can easily be adopted from scalar
geometric multigrid. Suitable smoothing is the inter-
esting issue here. Insights in smoothers for stabilized
versions of the incompressible Navier–Stokes equations
on collocated grids [9] can be used to set up efficient
smoothers.

In detail, we will consider four different smoothers.
Firstly, we construct a point-wise collective Gauss–Seidel
relaxation, i.e., at each grid point, three unknowns ui,j, vi,j
and pi,j are solved simultaneously. This means that a
small 3 × 3 system must be solved for each grid point. It
is convenient to consider the correction equations,

⎛
⎝ a1,1 a1,2 a1,3

a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎞
⎠

⎛
⎝ δui,j

δvi,j
δpi,j

⎞
⎠

n+1

=
⎛
⎜⎝

r1
i,j

r2
i,j

r3
i,j

⎞
⎟⎠

n

,

where δun+1
i,j = un+1

i,j − un
i,j, δpi,j = pn+1

i,j − pn
i,j and (rl

i,j)
n

represents the residual of equation l(l = 1, 2, 3) of the
system corresponding to node (i, j). The correction is
added with a relaxation parameter ω: un+1

i,j = un
i,j +

ωδun+1
i,j , pn+1

i,j = pn
i,j + ωδpn+1

i,j . As a second smoother,
we include the alternating line Gauss–Seidel relaxation.
This is a straightforward generalization of the point-wise
collective smoother. For each line a block tridiagonal
matrix has to be inverted.

The third coupled smoother, sometimes called box
relaxation, updates all unknowns appearing in the dis-
crete divergence operator in Eq. (7) simultaneously.
In practice, this means that five unknowns (pi,j, ui+1,j,
ui−1,j, vi,j+1, vi,j−1) centered around a pressure point are
relaxed simultaneously. Therefore, for each box a small
5 × 5 matrix must be inverted using the respective four
equilibrium equations and the mass conservation equa-
tion in the center of the box (see Fig. 1).

Finally, we also evaluate the line-version of box
smoothing, an alternating box-line Gauss–Seidel. For
example, in the case of box x-line relaxation, this means

Fig. 1 Five unknowns centered around a pressure point updated
simultaneously
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Fig. 2 Unknowns updated simultaneously by box x-line relax-
ation

that all unknowns marked in Fig. 2 are updated collec-
tively.

5 Numerical experiments

5.1 Analytic solution of 2D model problem

We start this section by solving numerically a poroelas-
ticity problem with a simple analytic solution given by

u = cos(πx) sin(πy) sin(π t),

v = sin(πx) cos(πy) sin(π t),

p = −2(λ + 2µ)π sin(πx) sin(πy) sin(π t).

Source term f is consequently determined. Due to the
smooth solution in this problem we do not expect
unphysical oscillations. However, with this example we
show that the stabilization term, h2∆pt/4(λ + 2µ), does
not introduce too much artificial diffusion. In the exam-
ple in Sect. 5.2, we will see that the stabilization term
eliminates unphysical oscillations in the solution of the
pressure completely. Tables 1 and 2 present the differ-
ence between analytic and numerical solution in the
maximum norm at final time t = 0.5 for the reference
parameter set λ = 8333, µ = 12500, k = 10−3 without
and with the artificial pressure term, respectively. As for
this example Crank–Nicolson scheme has been adopted,
we also see in Table 2 that second order accuracy is main-
tained. On the other hand, if we omit 4(λ + 2µ) in the
artificial term, i.e. if we consider an artificial term like

Table 1 Maximum norm of the error for displacements and for
pressure with unperturbed collocated scheme (not stable)

Grid ||uh−u||∞
||u||∞

||ph−p||∞
||p||∞

16 × 16 × 2 0.00214 0.003965
32 × 32 × 4 0.000534 0.000983
64 × 64 × 8 0.000132 0.0002425
128 × 128 × 16 3.2873 × 10−5 5.89612 × 10−5

Table 2 Maximum norm of the error for displacements and for
pressure with the term h2∆pt/4(λ + 2µ) in the equations

Grid ||uh−u||∞
||u||∞

||ph−p||∞
||p||∞

16 × 16 × 2 0.00216 0.004074
32 × 32 × 4 0.0005389 0.001008
64 × 64 × 8 0.000133 0.0002474
128 × 128 × 16 3.2958 × 10−5 5.9487 × 10−5

Table 3 Maximum norm of the error for displacements and for
pressure adding the term h2∆pt

Grid ||uh−u||∞
||u||∞

||ph−p||∞
||p||∞

16 × 16 × 2 0.3010 0.9101
32 × 32 × 4 0.2449 0.7286
64 × 64 × 8 0.10232 0.3048
128 × 128 × 16 0.01182 0.0351

h2∆pt we introduce too much diffusion obtaining incor-
rect results as can be seen in Table 3. Details about the
multigrid convergence are given in the discussion of the
next problem.

5.2 Poroelastic footing experiment

The second example is a true 2D footing problem, see
also [10]. The simulation domain is a 100 by 100 m block
of porous soil, Ω = (−50, 50) × (0, 100), as in Fig. 3.

At the base of this domain the soil is assumed to be
fixed while at some centered upper part of the domain a
uniform load of intensity σ0 is applied in a strip of length
40 m. The whole domain is assumed free to drain. More

Fig. 3 Computational domain for the footing problem
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Table 4 Material parameters for the second poroelastic problem

Property Value Unit

Young’s modulus 3 × 104 N/m2

Poisson’s ratio 0.2 –
Permeability 10−7 m2

Fluid viscosity 10−3 Pas

precisely, the boundary data are given as follows:

p = 0, on ∂Ω ,

σxy = 0, σyy = −σ0, on Γ1,

σxy = 0, σyy = 0, on Γ2,

u = 0, on ∂Ω \ (Γ1 ∪ Γ2),

where σxy = µ

(
∂u
∂y

+ ∂v
∂x

)
, σyy = λ

∂u
∂x

+ (λ + 2µ)
∂v
∂y

,

and

Γ1 = {(x, y) ∈ ∂Ω , / |x| ≤ 20, y = 100},
Γ2 = {(x, y) ∈ ∂Ω , / |x| > 20, y = 100}.
The material properties of the porous medium are given
in Table 4 where λ and µ are related to Young’s modulus
E and Poisson’s ratio ν by

λ = νE
(1 + ν)(1 − 2ν)

, µ = E
2(1 + ν)

.

The uniform load is taken as σ0 = 104 N/m2.
Notice that the boundary condition for the footing

problem involves the prescription of stress conditions.
A second order discretization of these boundary con-
ditions is explained below. We consider, for example, a
node (x, y) at Γ1, where the boundary conditions read

µ

(
∂u
∂y

+ ∂v
∂x

)
= 0, (25)

λ
∂u
∂x

+ (λ + 2µ)
∂v
∂y

= σ0. (26)

With the use of the poroelasticity equation

−(λ + 2µ)
∂2u
∂x2 − µ

∂2u
∂y2 − (λ + µ)

∂2v
∂x∂y

+ ∂p
∂x

= 0,

we find

u(x, y − h) = u(x, y) − h
∂u
∂y

(x, y)

− h2

2µ

(
(λ + 2µ)

∂2u
∂x2 (x, y) + (λ + µ)

∂2v
∂x∂y

(x, y)

− ∂p
∂x

(x, y)

)
+ O(h3).

So, in order to approximate boundary condition (25),
we consider the second order difference approximation

2µ

h

(
uȳ + v◦

x

)
− (λ + 2µ)ux̄x − (λ + µ)vxȳ = 0.

Similarly, to approximate boundary condition (26) we
can employ the second order approximation

2
h

(
(λ + 2µ)vȳ + λu◦

x

)
− µvx̄x − (λ + µ)uxȳ + pȳ = 2σ0

h
.

Figures 4 and 5 show that standard central finite differ-
ences for the original system of equations on a 402-grid
lead to spurious oscillations in the discrete pressure at
time t = 0.01. These unphysical oscillations do not occur
with the stabilization term h2∆pt/4(λ+2µ) added to the
equation, as seen in Figs. 6 and 7. On the other hand,
as also shown in Sect. 5.1, if 4(λ + 2µ) is omitted in the
artificial term too much diffusion is introduced, yielding
incorrect results (seen in Figs. 8 and 9).

Fig. 4 Numerical solution for pressure for 2D poroelasticity
reference problem, 402-grid without stabilization term

Fig. 5 Numerical solution for pressure for 2D poroelasticity
reference problem, 402-grid without stabilization term
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Fig. 6 Oscillation-free numerical solution for pressure for 2D
poroelasticity reference problem, 402-grid adding the term
h2∆pt/4(λ + 2µ)

Fig. 7 Oscillation-free numerical solution for pressure for 2D
poroelasticity reference problem, 402-grid adding the term
h2∆pt/4(λ + 2µ)

Fig. 8 Numerical solution for pressure for 2D poroelasticity ref-
erence problem with too much artificial diffusion, 402-grid adding
the term h2∆pt

This problem is solved iteratively by multigrid with
the smoothing methods proposed above. The stopping
criterion per time step is that the absolute residual
should be less than 10−6. In Table 5 we show multi-
grid convergence results using the alternating box-line

X

Y

-50 0 50
0

10

20

30

40

50

60

70

80

90

100

Fig. 9 Numerical solution for pressure for 2D poroelasticity ref-
erence problem with too much artificial diffusion, 402-grid adding
the term h2∆pt

Table 5 F(1,0)-cycle, alternating box-line smoother, number of
cycles and CPU time

Grid Number of cycles CPU time(s)

40 × 40 11 2
80 × 80 11 4
160 × 160 11 11
320 × 320 11 46

smoother from Sect. 4. The F(1,0)-cycle [12], meaning
one pre-smoothing, no post-smoothing steps, is used
each time step. The CPU time for this system on a Pen-
tium IV, 2.6 GHz is 11 s on a 1602-grid, and 46 s per time
step on a 3202-grid. A fast and h-independent behaviour
is observed with on average 11 cycles per time step.

In the next experiments, based on the footing prob-
lem, we perform a systematic parameter study. In par-
ticular, we vary the quantity κ/η. For all tests in the
following, F(2,1)-cycles are used.

Figure 10 presents the convergence for the alternating
box-line smoother for different values of κ/η. For all val-
ues of κ/η very satisfactory convergence is obtained by
the smoother. Figure 11 then shows the corresponding
convergence with the point-wise box smoother. It can
be observed that this smoother is sensitive to the size
of the diffusion coefficient. For small values the method
does not longer converge. For large values, however, the
convergence is very satisfactory. Figure 12 presents the
multigrid convergence for the alternating line Gauss–
Seidel smoother. For small values of κ/η, like κ/η =
10−4, the convergence is unsatisfactory. For complete-
ness also the results with the point-wise Gauss–Seidel
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Fig. 10 F(2,1)-convergence with the alternating box-line
smoother with a grid 3202 for different values of k, k/η =
10−2, 10−4, 10−6, 10−8
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Fig. 11 F(2,1)-convergence with the box smoother with a grid
3202 for different values of k/η, k/η = 10−2, 10−3, 10−4

smoother are presented in Fig. 13. Obviously, for κ/η =
10−4 the point-wise smoother also does not perform
well. From this experiment, the box-line smoother is
to be preferred, as it results in a robust convergence.

We evaluate this box-line smoother in more detail as
we let ν tend to 0.5 in the experiments shown in Table 6.
For satisfactorily convergence in this extreme parame-
ter range, we have to choose overrelaxation parameter
ω = 1.3. In the table we observe for this value of ω a fast
and robust multigrid convergence in the limit ν → 0.5.
The choice of overrelaxation parameter is expected to
be confirmed by local Fourier analysis. This is not done
here.
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Fig. 12 F(2,1)-convergence with the line smoother with a grid
3202 for different values of k, k/η = 10−2, 10−3, 10−4
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Fig. 13 F(2,1)-convergence with the point Gauss–Seidel smoo-
ther with a grid 3202 for different values of k, k/η = 10−2,
10−3, 10−4

Table 6 F(2,1) multigrid convergence factors, and, in brackets, the
average number of iterations per time step for different ν-values
in the second poroelasticity test problem

Grid

40 × 40 80 × 80 160 × 160 320 × 320

ν = 0.2 0.30 (10) 0.35 (11) 0.23 (9) 0.2 (9)
ν = 0.3 0.25 (9) 0.35 (12) 0.20 (9) 0.17 (8)
ν = 0.35 0.21 (8) 0.38 (12) 0.20 (9) 0.13 (8)
ν = 0.4 0.16 (7) 0.37 (12) 0.22 (9) 0.11 (7)
ν = 0.45 0.26 (9) 0.30 (10) 0.22 (9) 0.22 (10)

6 Conclusions

In this paper we have presented an accurate and stable
discretization for the 2D incompressible poroelasticity
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equations on a collocated grid. Stabilization is done by
adding an extra term in one of the continuous equations.
It has been proved that a stable and accurate solution
is obtained with this new set of poroelastic equations.
Numerical experiments confirm the theory. In addition,
an efficient multigrid method is constructed for consoli-
dation type problems on Cartesian grids. This is done on
the basis of box relaxation; its robust variant being the
alternating box-line relaxation. We have also shown that
box-line relaxation is robust for a wide range of values
of the Lamé coefficients, if overrelaxation is employed.
So, box relaxation is also of importance for multigrid
efficiency on collocated grids. The other multigrid com-
ponents are standard. The treatment of stress bound-
ary conditions, as they appear for a poroelastic footing
experiment do not pose substantial difficulties to the
multigrid method.
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